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Abstract
We show that a class of multimode optical transformations that employ
linear optics plus two-mode squeezing can be expressed as SU(1,1)
operators. These operations are relevant to state-of-the-art continuous variable
quantum information experiments including quantum state sharing, quantum
teleportation and multipartite entangled states. Using this SU(1,1) description
of these transformations, we obtain a new basis for such transformations that
lies in a useful representation of this group and lies outside the often-used
restriction to Gaussian states. We analyze this basis, show its application to
a class of transformations and discuss its extension to more general quantum
optical networks.

PACS numbers: 03.65.Fd, 42.50.Ex, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Heisenberg uncertainty principle ensures that the light is noisy at a quantum level.
Mathematically, this noise arises because of non-commutativity of the sine and cosine
quadratures of light. In the vacuum state, the noise in both quadratures are equal, but the
noise can be squeezed—i.e. the noise in one quadrature can be reduced at the expense of
increasing noise in the complementary quadrature—by propagation through nonlinear optical
devices such as crystals and gases. In quantum information applications, squeezers, which shift
fluctuations from one quadrature to another [1], provide an entanglement resource through
correlated noise in two modes with these correlations stronger than anything possible in a
classical description of light [2, 3].

The importance of squeezed light in quantum information is evident in its role in
some of the most important experiments in quantum information science: teleportation
[4], entanglement swapping [5], tests of local realism and Einstein–Podolsky–Rosen (EPR)
paradox [6], and quantum state sharing [7, 8]. These continuous variable quantum information
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experiments involve more than two modes, and entanglement between more than two modes
is inherent in these experiments.

Here we analyze multimode squeezed light. Specifically, we are interested in the case of
two-mode squeezed light (which could be generated by a two-mode squeezer or, alternatively,
by two single-mode squeezers in opposite phase with their outputs mixed at a beam splitter to
yield two-mode squeezed light [9]), with the squeezed field distributed over multiple modes via
linear optics to share the squeezed light between modes. Mathematically, the transformation
is described by a matrix, which transforms input state vectors into output state vectors.
The choice of basis can simplify the mathematical description as well as the calculations
themselves. For example, if the inputs are Gaussian states, it is convenient to use a Gaussian
basis, and transformations can be fully described in terms of the multivariate vector of means
and the multivariate covariance matrix [10]. For general input states, the Fock number state
basis is a useful basis to write general transformations; two alternative representations that
transform simply under squeezing and linear optics are provided by the Wigner function
[11, 12] and by the position representation [8]. The problem with these approaches for general
input states is that the size of the matrix grows linearly in the number of modes.

On the other hand, the use of group theoretical concepts in quantum optics is becoming
more and more prevalent [13–16]. Understanding the symmetry of a quantum system and
identifying its group properties allow one to use a large class of mathematical tools to simplify
problems [17]. Here, we show that an alternative basis can be obtained, which relies on
determining the symmetries of the network transformation and using the powerful machinery
of Lie group theory, including the Wigner–Eckart theorem [18]. In our basis, the mathematical
description has a constant size independent of the number of modes. Our approach builds
upon the SU(1,1) symmetry inherent in combining squeezing with linear optics in two modes.

In the absence of squeezing, n-mode linear optical transformations are elements of the
compact special unitary group SU(n) [19]; with squeezers included in the network, optical
network transformations are given by elements of the symplectic group Sp(2n, R) [10, 20].
The fact that these transformations are the members of the symplectic group guarantees the
simplicity of describing Gaussian state transformations using just covariance matrices and
transformations of means [21], but this simplicity does not carry over to general non-Gaussian
states.

Here, we show that a broad class of quantum optical networks involving two-mode
squeezing and linear optics of arbitrarily many modes, can be greatly simplified by exploiting
a SU(1,1) ∼= Sp(2, R)⊂ Sp(2n, R) symmetry in such systems. This symmetry allows us
to describe the transformation with fixed size independent of the number n of modes. All
examples mentioned above—quantum teleportation, entanglement swapping, state sharing
and tests of local realism—have transformations that are members of this class. We exploit
this SU(1,1) symmetry by finding a basis that reduces the n-mode Fock states into irreducible
representations (irreps) of this group.

In addition to finding the SU(1,1) symmetry for a broad class of interferometers
comprising linear optics and two-mode squeezing, and finding a convenient basis in which
the transformations have fixed size independent of the number n of modes, our work points
to new directions in studies of more complex interferometers involving more squeezers.
The Bloch–Messiah theorem applied to quantum optical networks [22, 23] is a powerful
tool to reduce such interferometers to all linear optical transformations, followed by single-
mode squeezers, followed by all linear optical transformations. The approach we establish
here may provide an alternative to decomposing such interferometers by concatenating
interferometers into a larger whole. We discuss this possible future direction for research in
the conclusions.
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2. Background: two-mode squeezing and the SU(1,1) Lie group

Two-mode squeezed states can be generated either by entangling two independent single-
mode squeezed states via a 50:50 beamsplitter, or by employing the non-degenerate operation
of a nonlinear medium in the presence of two incoming modes [24]. The unitary operator
describing two-mode squeezing is

Ŝab(η) = exp[−i(ηâb̂ + η∗â†b̂†)/2], (1)

with â, b̂ the annihilation operators of the incoming modes and η ∈ C the squeezing parameter.
This operator gives a unitary representation of the SU(1,1) Lie group on the Hilbert space of
two modes. As such, it is generated by a su(1, 1) Lie algebra given by

K̂+ = â†b̂†, K̂− = âb̂, K̂0 = 1
2 (â†â + b̂b̂†), (2)

which satisfy the commutation relations

[K̂0, K̂±] = ±K̂±, [K̂−, K̂+] = 2K̂0. (3)

The SU(1,1) Casimir invariant is

K̂2 = K̂2
0 − 1

2 (K̂+K̂− + K̂−K̂+) = 1
4 [(â†â − b̂†b̂)2 − 1̂1]. (4)

Eigenvalues of K̂2 are used to label the irreps of SU(1,1), and eigenvalues of K̂0 provide
an index for a basis of each irrep. Denoting such an orthonormal basis by {|k, µ〉}, we have
the following SU(1,1) action:

K̂±|k, µ〉 =
√

(µ ± k)(µ ∓ k ± 1)|k, µ ± 1〉,
K̂0|k, µ〉 = µ|k, µ〉,
K̂2|k, µ〉 = k(k − 1)|k, µ〉.

(5)

Due to the non-compactness of this group, all unitary irreps are infinite dimensional. There
are in fact several different series of irreducible representations of SU(1,1) distinguished by
the domains of these eigenvalues [17]. For now, we are only interested in the usual positive
discrete series of irreps where k is a non-negative half integer and µ takes values k + m for
m = 0, 1, 2, . . . carried by a Hilbert space denoted by D+

k .
If we label the number of excitations for modes a and b by na and nb, respectively, then k

satisfies

k = |na − nb| + 1

2
. (6)

As the relabeling of modes a ↔ b is physically equivalent to the original labeling, we consider
the cases ±(na − nb) to be equivalent irreps (hence the absolute value above). Thus, we say
that each irrep k > 0 occurs twice, and the Hilbert space decomposes as

Ha ⊗ Hb = D+
1
2
⊕ 2D+

1 ⊕ 2D+
3
2
⊕ · · · . (7)

Assuming that mode a has more photons than mode b, an arbitrary two-mode state |na, nb〉, is
equivalent to SU(1,1) weight states |k, µ〉 with

k = na − nb + 1

2
, µ = na + nb + 1

2
. (8)

As the irrep label k is proportional to the photon number difference, and irrep spaces are
invariant under SU(1,1), the photon number difference is conserved for two-mode squeezers.
In other words, the photon number difference in the two modes entering these optical elements
equals the photon number difference leaving them.
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(a) (b)

(c) (d )

Figure 1. The dashed rectangles show that how three-mode or four-mode squeezed states, which
are a key source of entanglement, can be generated by distributing a two-mode squeezed state over
other modes. Such states are a required ingredient for various quantum information tasks, such as
(a) quantum state sharing [22], (b) quantum teleportation [11], (c) entanglement swapping [5] and
(d) tests of local realism and the Einstein–Podolsky–Rosen paradox [6].

Discovering an appropriate realization of a symmetry group enables a clear understanding
of a system via the mathematical properties that are already known for these groups. We
can exploit representation-theoretic machinery, such as selection rules and branching rules
to facilitate calculations [17, 24, 25]. Output states are then characterized by generalized
coherent states that are known for groups such as SU(1,1) [26].

Often, understanding the symmetry of a system also brings with it much needed physical
insight as systems become more complicated. However, we will limit the scope of this paper
to identifying that symmetry and constructing representations for a class of linear optical
networks plus squeezers that occur in several important optical quantum information protocols
as described in the following section.

3. Motivation: three-mode squeezing and the SU(1,1) Lie group

As mentioned in the introduction, the motivation for this research stems from recent optical
quantum information experiments. In figure 1 we have included simple schematics of these
experiments. As is indicated in the figure, all these systems incorporate a two-mode squeezer
with one (or both) of the squeezer’s output modes mixed with a third (and fourth) mode on
a 50:50 beam splitter, thereby distributing entanglement across three (or four) modes in the
network; see figure 2.

Two-mode squeezing action is given in equation (1); the beamsplitter action on modes a
and b is given by

B̂ab(θ, φ) = exp[θ(â†b̂ eiφ − âb̂† e−iφ)/2]. (9)

4
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Figure 2. The ‘primitive’ three-mode optical network in which tripartite entangled states are
produced. Such states are the first step towards multipartite entangled states and are applied in
various optical quantum schemes some of which are shown in figure 1.

For the given values of the arguments, the transformation performed by the three-mode
component of figure 2 is [9]

B̂+
a2a1

Ŝa1b1(2iη) = Ŝa2a1b1(
√

2iη)B̂+
a2a1

(10)

for

B̂±
ab ≡ B̂ab

(π

2
,±π

)
(11)

and

Ŝa2a1b1(
√

2iη) = exp

[−iη√
2

(â1b̂1 − â2b̂1) +
iη∗
√

2

(
â
†
1b̂

†
1 − â

†
2b̂

†
1

)]
. (12)

It is not difficult to check that the generators of this transformation satisfy a su(1, 1) algebra
with ladder operator

K̂+ = 1√
2

(
â
†
1b̂

†
1 − â

†
2b̂

†
1

)
. (13)

The specifics of this realization have been discussed in our preliminary investigation [27]. In
the following section, we generalize this result to arbitrarily many modes.

4. Results: multimode squeezing and the SU(1,1) Lie group

In this section, we show that the three-mode entanglement distributing component given in
figure 2 can be extended to arbitrarily many modes while still being generated by a su(1, 1)

algebra. We then analyze the representations of this algebra on the multimode Fock space,
giving the new basis of SU(1,1) weight states.

We are considering an optical network (see figure 3) that comprises one two-mode squeezer
in which one output state is mixed via beam splitters between r modes, created by

{
â
†
l

}r

l=1,

and the other mixed with s modes, created by
{
b̂
†
l

}s

l=1. For simplicity, we consider only 50:50
beam splitters with beam splitters for the upper r modes having a phase φ = π and those for
the lower s modes having φ = −π . Based on the Baker–Campbell–Hausdorff formula1, the
resulting transformation performed by the multimode network is

B̂+
arar−1

· · · B̂+
a2a1

B̂−
bsbs−1

· · · B̂−
b2b1

Ŝa1b1(η) = ŜArBs
(η)B̂+

arar−1
· · · B̂+

a2a1
B̂−

bsbs−1
· · · B̂−

b2b1
, (14)

1 The Baker–Campbell–Hausdorff formula is eiλÂB̂ e−iλÂ = B̂+(iλ)[Â, B̂]+ (iλ)2

2! [Â, [Â, B̂]]+ (iλ)3

3! [Â, [Â, [Â, B̂]]]+
· · ·.

5
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(a) (b)

Figure 3. Equivalence between a typical multimode quantum optical network and a pseudo-two-
mode squeezer. (a) A multimode optical network comprising a two-mode squeezer (Sab) and
several 50:50 beam splitters. (b) A pseudo-two-mode squeezer (SAB).

with ŜArBs
being a multimode squeezing operator (see figure 3). This operator can be viewed

as a Bogoliubov-transformed two-mode squeezer and is given by

ŜArBs
= exp

[−i
(
ηÂr B̂s + η∗Â†

r B̂
†
s

)/
2
]
, (15)

where Âr and B̂s are the generalized boson (pseudo-boson) operators

Âr =
r−1∑
l=1

(−1)l−1âl√
2l

+
(−1)r−1âr√

2r−1
, B̂s =

s−1∑
l=1

(−1)l−1b̂l√
2l

+
(−1)s−1b̂s√

2s−1
(16)

given in terms of the original optical modes al and bl for r, s � 2. Of course, these pseudo
operators satisfy the canonical bosonic commutation relations

[Âr , Â
†
r ] = 1̂1, [B̂s, B̂

†
s] = 1̂1. (17)

The Hamiltonian generating ŜArBs
is a linear combination of the two operators Âr B̂s and

Â
†
r B̂

†
s . These together with their commutators are closed under the commutation relations of

a su(1, 1) algebra and thus provide a pseudo-two-boson realization of su(1, 1)

K̂− = Âr B̂s, K̂+ = Â†
r B̂

†
s , K̂0 = 1

2

(
Â†

r Âr + B̂†
s B̂s + 1̂1

)
. (18)

The Casimir operator for this realization is

K̂2 = 1
4

[(
Â†

r Âr − B̂†
s B̂s

)2 − 1̂1
]

(19)

with Â
†
r Âr and B̂

†
s B̂s the pseudo-number operators, N̂A and N̂B , respectively. If we define

pseudo-number states such that

N̂A|nA} = nA|nA}, N̂B |nB} = nB |nB}, (20)

6
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then the entire situation is formally equivalent to the two-mode realization given in section 2.
From equation (8), we can read off the labels for a basis of SU(1,1) weight states |k, µ〉 in
terms of the pseudo-number states |nAnB}:

k = 1
2 (|nA − nB | + 1), µ = k + m = 1

2 (nA + nB + 1),

k = 1
2 , 1, 3

2 , . . . , m = 0, 1, 2, . . . ,

nA = na1 + na2 + · · · + nar
, nB = nb1 + nb2 + · · · + nbs

.

(21)

Therefore, the difference between the total photon number for modes a1 to ar and the total
photon number for modes b1 to bs is conserved.

All that remains in order to specify the new basis is to give the pseudo-number states in
terms of the original modes. For |nA}, and analogously for |nB}, we obtain

|nA} = (A
†
r )

nA

√
nA!

|0} =
∑

n

CnA

n |n〉, (22)

where n = (na1 , na2 , . . . , nar
) is a partition of nA:

r∑
l=1

nal
= nA, 0 � nal

∈ Z, (23)

and |n〉 = |na1 , na2 , . . . , nar
〉 is a multimode number state. From equations (16) and (22), we

have

CnA

n =
(

nA!

na1 !na2 ! · · · nar
!

)1/2
[

r−1∏
l=1

(
(−1)l−1

√
2l

)nal

] (
(−1)r−1

√
2r−1

)nar

. (24)

It is not difficult to verify that these states are orthonormal, {nA|mA} = δnAmA
.

Take for example the experimentally significant three-mode case depicted in figure 2. In
this case, the pseudo-number states, in terms of the original modes a1 and a2, are given by

|nA} = 1√
2nA

nA∑
na1 =0

(−1)NA−na1

(
nA

na1

)1/2

|na1na2〉, nA = na1 + na2 , (25)

which is normalized because

1

2nA

nA∑
n1=0

(
nA

na1

)
= 1. (26)

Assuming that the number of photons in modes a1 and a2 exceeds the photon number in mode
b1, the µth three-mode SU(1,1) weight state in irrep k, in terms of these three photon number
states, is

|k, µ〉 = 1√
2k+µ−1

k+µ−1∑
na1 =0

(−1)na1

(
k + µ − 1

na1

)1/2

|k + µ − na1 − 1, na1 , µ − k〉. (27)

However, by this assumption we can only get half of the irreps. To get the other half, one
needs to exchange k + µ − 1 and µ − k in the above expression.

5. Discussion

This SU(1,1) basis enables us to use a variety of mathematical properties that have already
been established for this group, thereby significantly facilitating calculations. For instance,
the SU(1,1) Clebsch–Gordan coefficients [24, 28, 29] are known for coupling different

7
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Figure 4. A multimode network with more than one two-mode squeezer. Such a network can
be built by concatenating different parallel sections each being of the type of multimode network
considered earlier. The known SU(1,1) Clebsch–Gordan and Racah coefficients can be used to
couple the corresponding representations and to obtain the resultant states.

representations and obtaining the resultant states. These coefficients are very handy if one
wants to concatenate some of these typical multimode networks ‘in parallel’ (see figure 4).
Furthermore, if the concatenation takes place between more than two such optical networks,
then the Racah coefficients [30] give the transformations between different orderings of the
couplings. The Wigner–Eckart theorem [18] makes the calculation of matrix elements of
a tensor operator, or any operator generated from the elements of the algebra (a linear
combination thereof, such as the squeezing operator) in this SU(1,1) basis much simpler than
a direct approach. Generalized coherent states [26], orthogonality and asymptotic behavior of
the matrix elements [17] are some other examples of the well-known properties for this group.

The significance of our result is that it allows for arbitrary input states, in contrast to
existing methods which usually rely upon Gaussian inputs. This technique can therefore
be used to characterize a larger class of output states. Moreover, because the algebraic
structure is independent of the number of modes, complicated multimode linear quantum
optical networks with two-mode squeezing, that are of this form, can be dealt with much more
ease than with, for example, Wigner functions, in which one needs to calculate 2n integrals, or
covariance matrices for which 4n2 matrix elements must be calculated, where n is the number
of modes.

These advantages come with a cost, namely a multiplicity of SU(1,1) irreps that grows as
the number of modes. For r + s modes there are always only two pseudo-boson operators, Âr

and B̂s , leaving r +s−2 ‘directions’ in Fock space. Finding r +s−2 orthogonal pseudo-boson

8
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operators and using them to label multiplicities would be tedious but not impossible for large
r or s: this is an open question for further research. Also, we have limited our attention
to linear quantum optical networks with two-mode squeezing with the specific sequence of
beamsplitters given by equation (14)—we considered this form since it is a direct extension of
the networks in existing experiments. This SU(1,1) realization will occur for any Bogoliubov
transformation that mixes each output port of the two-mode squeezer separately; that is, any
Bogoliubov transformation that does not mix a modes and b modes (see figure 3). When
these modes are mixed ‘in series’ by some multiport optical element a far more complicated
situation arises, as exemplified in the following section.

6. More complicated scenarios

Consider the network arising from the reconstruction protocol of the quantum secret sharing
experiment in figure 1. Here, there is an extra two-mode squeezer operating on one mode from
the upper set and one mode from the lower set of the three-mode squeezing scheme given in
figure 2. Consequently, we obtain the identity

Ŝa2b1(η
′)Ŝa2a1b1(

√
2iη) = Ŝa2a1b1(η, η′)Ŝa2b1(η

′), (28)

where Ŝa2a1b1(η, η′) is the exponential of a linear combination of 12 terms. However, by fixing
two of the parameters,

φ′ = π

2
⇒ η′ = s ′ exp(iφ′) = is ′, η = η∗ ⇒ φ = 2mπ (29)

for m = 0, 1, 2, . . . , we obtain

Ŝa2a1b1(η, η′) = exp

[
η√
2

cosh

(
s ′

2

) (
â1b̂1 − â

†
1b̂

†
1

)
+

η√
2

sinh

(
s ′

2

) (
â
†
2â1 − â2â

†
1

)
− η√

2

(
â2b̂1 − â

†
2b̂

†
1

)]
.

(30)

This operator is generated by

K̂x = −i
(
â1b̂1 − â

†
1b̂

†
1

)
, K̂y = −i

(
â2b̂1 − â

†
2b̂

†
1

)
, K̂z = i

(
â
†
2â1 − â2â

†
1

)
, (31)

which satisfy the commutation relations of su(1, 1). A unitarily equivalent form of these
operators has been found previously by Abdalla et al [32]. One can unitarily transform these
operators using

Û = exp
[
i
π

4

(
â
†
2â1 + â2â

†
1

)]
, (32)

in order to diagonalize K̂z in the Fock basis:

ˆ̃Kz = ÛK̂zÛ
† = â

†
2â2 − â

†
1â1. (33)

However, this transformation does not simplify the form of the other operators; in particular,
the Casimir operator

ˆ̃K
2 = ÛK̂2Û † = (

â
†
2â2 − â

†
1â1

)2 − 2
(
â
†
2â2 + â

†
1â1 + 1̂1

)
b̂
†
1b̂1 − (

â
†
2â2 + â

†
1â1 + 21̂1

)
+ 2i

(
â
†
2â

†
1b̂

†2
1 − â2â1b̂

2
1

)
.

(34)

Identifying the appropriate representations of this realization of su(1, 1) carried by the
Fock space of three modes is quite challenging. For one, the lowering operator K̂− is a linear
combination of both lowering and raising operators. This means that the lowest weight µ = k

states are not Fock states but superpositions of Fock states, a situation that does not occur in
the standard one- and two-mode realizations. More importantly, K̂z can have both positive

9
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and negative eigenvalues in the Fock basis, which, along with the complicated structure of
K̂2, suggests that we have left the realm of discrete SU(1,1) irreps and must consider the less
intuitive continuous irreps that do not have extremal weights. The problem of which classes of
SU(1,1) irreps are supported on multimode Fock spaces is an interesting one deserving further
study. Understanding these representations would give us a powerful analytical tool since it
would give a complete symmetry adapted basis for these and ultimately more complicated
optical networks, which would aid in the investigation of squeezing and entanglement therein.

7. Conclusions

We have established a novel basis lying in the discrete representation of SU(1,1). This basis
is adapted to physical problems of multimode squeezing. Such problems occur in various
experimental setups for optical quantum information schemes involving a two-mode squeezer
and several passive optical elements. This technique facilitates the calculation of output states
without restricting to ‘standard’ input states like Gaussians.

We also showed that some interesting mathematical problems arise in more complicated
multimode schemes. These problems seem inherent to linear quantum optical networks with
squeezers and with more than two mixed modes; e.g., it also arises in a four-mode realization
of squeezing studied by Bartlett et al [32]. This interesting complication opens questions
about whether, by concatenating optical networks, each with just one two-mode squeezer,
the description remains within a discrete series representation of SU(1,1). Based on the
evidence discussed in the previous section, it seems unlikely. Such problems are important in
considering practical quantum information tasks, in studying squeezing as a resource and in
similar problems; our work reported here is an important step in this direction.
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